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ABSTRACT

We model a load using an artificial neural network (ANN) to improve an on-wafer line-reflect-
match (LRM) calibration of a vector network analyzer (VNA). The ANN is trained with measurement
data obtained from a thru-reflect-line (TRL) calibration. The accuracy of the LRM calibration using the
ANN-modeled load compares favorably to a benchmark multiline TRL calibration with an average worst-
case scattering parameter error bound of 0.017 over a 40-GHz bandwidth.

INTRODUCTION

Multiline TRL is a highly accurate means of VNA calibration and is especially useful for on-
wafer environments, since the characteristic impedance can be calculated from dimensional
measurements of the standards, which simply consist of a number of transmission lines of varying line
lengths and a highly reflective termination [1]. The disadvantages of this calibration method are that it
requires a lot of area on the wafer, due to the numerous long lines required for an accurate calibration.
Also, the different lengths of line necessitate changing the separation between probes during the
calibration process. In contrast, the LRM calibration [2], which requires only a short transmission-line
connection, a load, and a reflection, overcomes these limitations. Here, the reference impedance is set to
that of the standard load. The impedance of many on-wafer loads, however, is non-ideal, which can lead
to significant error in LRM calibrations. If the load is properly characterized, however, it is possible to
perform an accurate on-wafer LRM calibration.

Once an imperfect load is characterized, we must decide whether to develop a model for the
standard or to directly use the measurement data obtained from the benchmark calibration. Recently,
Jargon et al. [3] applied artificial neural networks (ANNs) to improve the modeling of on-wafer open-
short-load-thru (OSLT) standards. They showed that ANN models offer a number of advantages over the
use of calibrated measurement data files or equivalent-circuit models, namely, the following: (1) they do
not require detailed physical models, (2) calibration times can be reduced since only a few training points
are required to accurately model the standards, (3) ANN model descriptions are much more compact than
large measurement files, (4) ANN models trained on only a few measurement points can be much more
accurate than direct calibrations when limited data are available, and (5) they are less susceptible to the
noise inherent in measured data.

In this paper, we use a single-line TRL calibration to train an ANN model of the load for use with
an on-wafer LRM calibration. Using a single-line TRL calibration enables us to build an effective model
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of the load using minimal area on the wafer. This methodology results in an LRM calibration with less
overall error than that resulting from simply applying the single-line TRL calibration [4]. The following
sections describe our implementation of ANNs and assess the accuracy of the LRM calibration using the
ANN-modeled load.

LOAD MODELING

In this study, the LRM and multiline TRL standards and devices were constructed of coplanar
waveguide (CPW) transmission lines fabricated from 1.5µm gold conductors on a layer of 500µm thick
semi-insulating GaAs [5]; the gold center conductor was 73µm wide, and was separated from the ground
plane by 49µm gaps. The five line standards included a 0.55-mm thru line and four additional lines that
were 2.135, 3.2, 6.565, and 19.695 mm longer. All of the standards were measured using on-wafer
probes. For each standard, we measured scattering parameters at 192 frequencies from 0.5 to 40 GHz.

In Figure 1, we plot measurements of magnitude and phase of the load’s reflection coefficients.
They were determined by a TRL calibration using only the thru connection and the 2.135-mm line, and
applying an impedance transformation to the calibration, which yielded the measuredS-parameters
referenced to 50Ω [6]. Use of only a single line explains the inaccuracy at multiples of 26.65 GHz, where
the difference in line lengths corresponds to a multiple of half a wavelength. The figure shows that the
load deviates significantly from 50Ω.

We then used an ANN to model the load. The ANN architecture used for this modeling was a
feedforward, three-layer perceptron structure (MLP3) consisting of an input layer, a hidden layer, and an
output layer. Such an ANN allows complex models of input-output relationships. According to [7], an
MLP3 with one hidden sigmoidal layer is able to model almost any physical function accurately provided
that a sufficient number of hidden neurons are available. ANNs learn relationships among sets of input-
output data, which are characteristic of the device or system under consideration. After the input vectors
are presented to the input neurons and the output neurons are computed, the ANN outputs are compared
to the desired outputs, and errors are calculated. Error derivatives are then calculated and summed for
each weight until all of the training sets have been presented to the network. The error derivatives are
used to update the weights for the neurons, and training continues until the errors are less than prescribed
values. In this study, we utilized software developed by Zhang et al. [8] to construct our ANN models.

The ANN for the load standard consisted of one input (frequency) and two outputs (the real and
imaginary components) for theS-parameters. Based on previous experience [3], five neurons were chosen
for the hidden layer. Figure 1 shows the magnitude and phase of theS-parameters of both measured and
ANN-modeled data for the load standard. Notice that the ANN model for the load standards follows the
trends of the measured data, but avoids both the spike near 26.65 GHz as well as scatter of the TRL-
calibrated measurements. Whether or not this scatter is real, we see that ANNs follow general trends but
omit noise, which is usually desirable in a model.

CALIBRATION COMPARISONS

First, two consecutive multiline TRL calibrations, using all five lines, were compared to assess
the limitations on calibration repeatability caused by contact error and instrument drift. The technique of
[9] was used to determine an upper bound on this repeatability error. Briefly, the comparison determines
the upper bound for |S′ij-Sij| for measurements on any passive device, whereS′ij are the scattering
parameters of a device measured with respect to the first calibration andSij are the scattering parameters
measured with respect to the second calibration. The bound is obtained from a linearization, which
assumes the two calibrations are similar to the first order. The result, plotted as a solid curve in Figure 2,
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roughly indicates the minimum deviation between any pair of calibrations. The average of the worst-case
error bounds for repeatability was 0.013.

We also compared the single-line TRL calibration, which was used to develop the ANN model, to
the multiline TRL calibration. The result is plotted in Figure 2. Since we used only the 2.135-mm line
standard, our calibration accuracy is poor near multiples of 26.65 GHz, where the difference in line
lengths corresponds to a multiple of half a wavelength [1]. Otherwise the single-line TRL calibration is
nearly as accurate as the multiline TRL calibration at most frequencies.

We assessed the accuracy of the LRM calibrations by comparing them to a 50Ω multiline TRL
calibration. First, we compared a simple LRM calibration, where the load is assumed to be ideal, to the
multiline TRL calibration. Figure 2 illustrates a large difference since the reference impedance of the
LRM calibration, which is equal to the impedance of the non-ideal load, deviates significantly from 50Ω.

In order to assess the accuracy of the best LRM calibration, we compared the multiline TRL
calibration to the LRM with a fully characterized load, which involved calibrating the load with the
benchmark multiline TRL calibration and using the calibrated measurement data file to define the load.
This comparison is once again shown in Figure 2. The average of the worst-case error bounds for this
calibration was 0.011. Figure 2 also shows the worst-case error bounds for the LRM calibration based on
the ANN-modeled load. Here, the average worst-case error bound was 0.017.

CONCLUSIONS

The use of ANNs to model on-wafer LRM load standards compares favorably to a benchmark
multiline TRL calibration, with an average worst-case scattering-parameter error bound of 0.017 over a
40-GHz bandwidth. In our ANN model, we made use of five hidden neurons in the hidden layer of an
MLP3 architecture.

ANN models are advantageous in that they do not require detailed physical descriptions and they
eliminate noise inherent in measured data. They are also preferred over calibrated measurement files since
they are much more compact in size. For example, the ANN model we developed for the load required 28
real-valued parameters to generate complexS-parameters as a function of frequency. In contrast, a single
measurement file contains 576 real-valued numbers (192 frequency points plus the real and imaginary
components at each point). We have also shown in previous work [3] that calibration times can be
reduced when modeling standards using ANNs since only a few training points are required to accurately
model them.
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Figure 1. Magnitude and phase of the measured and modeledS-parameters of the load.

Figure 2. Worst-case error bounds between measurements of passive devices from LRM and TRL
calibrations and the multiline TRL calibrations.
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